検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 8 件中 1件目~8件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

OECD/NEA benchmark on pellet-clad mechanical interaction modelling with fuel performance codes; Influence of pellet geometry and gap size

Soba, A.*; Prudil, A.*; Zhang, J.*; Dethioux, A.*; Han, Z.*; Dostal, M.*; Matocha, V.*; Marelle, V.*; Lasnel-Payan, J.*; Kulacsy, K.*; et al.

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

The NEA Expert Group on Reactor Fuel Performance (EGRFP) proposed a benchmark on fuel performance codes modeling of pellet-cladding mechanical interation (PCMI). The aim of the benchmark was to improve understanding and modeling of PCMI amongst NEA member organizations. This was achieved by comparing PCMI predictions for a number of specified cases. The results of the two hypothetical cases (1 and 2) were presented earlier. The two final cases (3 and 4) are comparison between calculations and measurements, which will be published as NEA reports. This paper focuses on Case 3, which consists of eight beginning of life (BOL) sub-cases (3a to 3h) each with different pellet designs that have undergone ramping in the Halden Reactor. The aforementioned experiments are known as the IFA-118 experiments and were performed from 1969 to 1970. The variations between cases include four different pellets dimensions (7, 14, 20 and 30 mm of height), two different gapsizes between pellet-cladding (40 and 100 microns) and three variations on pellet face geometry (flat, dishing and dishing with chamfer). Such diversity has allowed exploring the codes sensitivity to these individual factors.

論文

Fracture-mechanics-based evaluation of failure limit on pre-cracked and hydrided Zircaloy-4 cladding tube under biaxial stress states

Li, F.; 三原 武; 宇田川 豊; 天谷 政樹

Journal of Nuclear Science and Technology, 57(6), p.633 - 645, 2020/06

 被引用回数:3 パーセンタイル:24.28(Nuclear Science & Technology)

To better understand the failure limit of fuel cladding during the pellet-cladding mechanical interaction (PCMI) phase of a reactivity-initiated accident (RIA), pre-cracked and hydrided cladding samples with base metal final heat-treatment status of cold worked (CW) and recrystallized (RX) were tested under biaxial stress conditions (axial to hoop strain ratios of 0 and 0.5). Displacement-controlled biaxial-expansion-due-to-compression (biaxial-EDC) tests were performed to obtain the hoop strain at failure (failure strain) of the samples. The conversion of the failure strains to J-integral at failure by finite-element analysis involving data of stress-relieved (SR) cladding specimens from our previous study revealed that the failure limit in the dimension of J-integral at failure unifies the effects of pre-crack depth. About 30 to 50 percent reduction in the J-integral at failure was observed as the strain ratio increased from 0 to 0.5 irrespective of the annealing type, pre-crack depth, and hydrogen content. the rate of fractional decreases of J-integral at failure with increase of hydrogen content are in the order of CW$$>$$SR$$>$$RX, which are essentially independent of strain ratio for the CW and SR samples. The results were incorporated into the failure prediction model of the JAEA's fuel performance code in the form of a correction factor that considers the biaxial loading effect.

論文

Analytical study of SPERT-CDC test 859 using fuel performance codes FEMAXI-8 and RANNS

谷口 良徳; 宇田川 豊; 天谷 政樹

Annals of Nuclear Energy, 139, p.107188_1 - 107188_7, 2020/05

 被引用回数:1 パーセンタイル:12.16(Nuclear Science & Technology)

The fuel-failure-limit data obtained in the simulated reactivity-initiated-accident experiment SPERT-CDC 859 (SPERT859) has entailed a lot of discussions if it represents fuel-failure behavior of typical commercial LWRs for its specific pre-irradiation condition and fuel state. The fuel-rod conditions before and during SPERT859 were thus assessed by the fuel-performance codes FEMAXI-8 and RANNS with focusing on cladding corrosion and its effect on the failure limit of the test rod. The analysis showed that the fuel cladding was probably excessively corroded even when the influential calculation conditions such as fuel swelling and creep models were determined so that the lowest limit of the cladding oxide layer thickness was captured. Such assumption of excessive cladding corrosion during pre-irradiation well explains not only the test-rod state before pulse irradiation but also the fuel-failure limit observed. Such understanding undermines anew the representativeness of the test data as a direct basis of safety evaluation for LWR fuels.

論文

The Effect of base irradiation on failure behaviors of UO$$_{2}$$ and chromia-alumina additive fuels under simulated reactivity-initiated accidents; A Comparative analysis with FEMAXI-8

宇田川 豊; 三原 武; 谷口 良徳; 垣内 一雄; 天谷 政樹

Annals of Nuclear Energy, 139, p.107268_1 - 107268_9, 2020/05

AA2019-0372.pdf:0.81MB

 被引用回数:3 パーセンタイル:35.51(Nuclear Science & Technology)

This paper reports a computer-code analysis on the base-irradiation behavior of the chromia-and-alumina-doped BWR rod irradiated to 64 GWd/t in Oskarshamn-3, Sweden, and subjected to the reactivity-initiated-accident (RIA) test OS-1, which resulted in a fuel failure due to pellet-cladding mechanical interaction (PCMI) at the lowest fuel-enthalpy increase in all the BWR tests ever performed. The inverse calculation which utilized post-irradiation examination data as its constraint conditions revealed that the OS-1 rod had very likely experienced more intense PCMI loading due to higher swelling rate during base irradiation than other BWR rods subjected to previous RIA tests and thus had been prone to experience enhanced radial-hydride formation. The significant difference in the cladding hoop-stress more than 50 MPa discriminates the OS-1 rod from other BWR rods and supports the interpretation that enhanced radial-hydrides formation differentiated the PCMI-failure behavior observed in the test OS-1 from the previous BWR-fuel tests.

論文

OECD/NEA benchmark on pellet-clad mechanical interaction modelling with fuel performance codes; Impact of number of radial pellet cracks and pellet-clad friction coefficient

Dost$'a$l, M.*; Rossiter, G.*; Dethioux, A.*; Zhang, J.*; 天谷 政樹; Rozzia, D.*; Williamson, R.*; Kozlowski, T.*; Hill, I.*; Martin, J.-F.*

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 10 Pages, 2018/10

The benchmark on PCMI was initiated by OECD/NEA Expert Group on Reactor Fuel Performance (EGRFP) in June 2015 and is currently in the latter stages of compiling results and preparing the final report. The aim of the benchmark is to improve understanding and modelling of PCMI amongst NEA member organisations. This is being achieved by comparing PCMI predictions of different fuel performance codes for a number of cases. Two of these cases are hypothetical cases aiming to facilitate understanding of the effects of code-to-code differences in fuel performance models. The two remaining cases are actual irradiations, where code predictions are compared with measured data. During analysis of participants' results of the hypothetical cases, the assumptions for number of radial pellet cracks and the pellet-clad friction coefficient (which can be zero, finite or infinite) were identified to be important factors in explaining differences between predictions once pellet-cladding contact occurs. However, these parameters varied in the models and codes used originally by the participants. This fact led to the extension of the benchmark by inclusion of two additional cases, where the number of radial pellet cracks and three different values of the friction coefficient were prescribed in the case definition. Seven calculations from six organisations contributed results were compared and analysed in this paper.

論文

Transient elongation of a fresh fuel rod under reactivity initiated accident conditions

石島 清見; 中村 武彦

Journal of Nuclear Science and Technology, 33(3), p.229 - 238, 1996/03

 被引用回数:7 パーセンタイル:54.42(Nuclear Science & Technology)

高燃焼度燃料は反応度事故において、燃料ペレットと被覆管の機械的相互作用(PCMI)により、脆化した被覆管に破損が生ずる可能性がある。このPCMIは、燃料ペレットの出力暴走による急速な膨張によって生ずる.反応度事故時のPCMI挙動を調べる炉内実験を日本原子力研究所の原子炉安全性研究炉(NSRR)を用いて行った。実験はPCMIの基本的挙動を理解するため、照射の効果を排除して、まず未照射燃料を用いて行った。作動変圧型伸び計を用いて、大気圧室温条件およびBWRの運転条件を模擬した高温高圧条件での燃料ペレットおよび被覆管の過渡伸びを測定した。また、FRAP-T6コードを用いて燃料棒の過渡挙動の予備解析を行い実験結果の理解を深めた。

論文

Pellet-cladding mechanical interaction of PWR fuel rod under rapid power transient

柳澤 和章; 片西 昌司; 藤城 俊夫

Journal of Nuclear Science and Technology, 31(7), p.671 - 676, 1994/07

 被引用回数:0 パーセンタイル:0.01(Nuclear Science & Technology)

出力過渡実験(燃料棒出力を4kW/mから32kW/mまで3kW/msで急昇)を実施し、以下の知見を得た。長手方向の燃料棒伸び歪みで評価したペレット-被覆管の力学的相互作用(PCMI)は、ベース照射済PWR燃料で0.07%であり、未照射PWR燃料で0.08%であった。観察された歪みの大きさは、スウェーデンのTRANS RAMPII実験での破損燃料の歪みと同程度であった。それにも拘らず本実験で燃料破損が生じなかった主たる理由は、線出力密度の増加途中から著しくなった緩和によるPCMIの急激な低下が原因であったと判断される。PWR燃料棒に発生したPCMIが、出力保持中ではなく過渡出力増加中に緩和によって減少する現象は本実験を通じて初めてみつけられた事象であり、燃料破損防止対策上極めて有用なものである。

口頭

Comparative analysis on base-irradiation behaviors of OS-1 test rod and other BWR-fuel rods subjected to previous NSRR tests

宇田川 豊

no journal, , 

This presentation reports a computer-code analysis on the base-irradiation behavior of the chromia-and-alumina-doped BWR rod irradiated to 64 GWd/t in Oskarshamn-3, Sweden, and subjected to the reactivity-initiated-accident (RIA) test OS-1, which resulted in a fuel failure due to pellet-cladding mechanical interaction (PCMI) at the lowest fuel-enthalpy increase in all the BWR tests ever performed. The inverse calculation which utilized post-irradiation examination data as its constraint conditions revealed that the OS-1 rod had very likely experienced more intense PCMI loading due to higher swelling rate during base irradiation than other BWR rods subjected to previous RIA tests and thus had been prone to experience enhanced radial-hydride formation. The significant difference in the PCMI-related parameters between the OS-1 rod and other BWR rods supports the interpretation that enhanced radial-hydrides formation differentiated the PCMI-failure behavior observed in the test OS-1 from the previous BWR-fuel tests.

8 件中 1件目~8件目を表示
  • 1